图像、语音识别

图像识别,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对象的技术,是应用深度学习算法的一种实践应用。 [1]现阶段图像识别技术一般分为人脸识别与商品识别,人脸识别主要运用在安全检查、身份核验与移动支付中;商品识别主要运用在商品流通过程中,特别是无人货架、智能零售柜等无人零售领域

图像的传统识别流程分为四个步骤:图像采集→图像预处理→特征提取→图像识别。图像识别软件国外代表的有康耐视等,国内代表的有图智能、海深科技等。另外在地理学中指将遥感图像进行分类的技术。

简介

图形刺激作用于感觉器官,人们辨认出它是经验过的某一图形的过程,也叫图像再认。在图像识别中,既要有当时进入感官的信息,也要有记忆中存储的信息。只有通过存储的信息与当前的信息进行比较的加工过程,才能实现对图像的再认。

图像识别技术的产生以及更新成为当下十分重要的发展方向,同时表现出了良好的发展前景,在信息收集、医疗以及产品安全等方面,都已经开始广泛运用图像识别技术,发挥了非常大的作用。

人的图像识别能力是很强的。图像距离的改变或图像在感觉器官上作用位置的改变,都会造成图像在视网膜上的大小和形状的改变。即使在这种情况下,人们仍然可以认出他们过去知觉过的图像。甚至图像识别可以不受感觉通道的限制。例如,人可以用眼看字,当别人在他背上写字时,他也可认出这个字来。

识别基础

图像识别可能是以图像的主要特征为基础的。每个图像都有它的特征,如字母A有个尖,P有个圈、而Y的中心有个锐角等。对图像识别时眼动的研究表明,视线总是集中在图像的主要特征上,也就是集中在图像轮廓曲度最大或轮廓方向突然改变的地方,这些地方的信息量最大。而且眼睛的扫描路线也总是依次从一个特征转到另一个特征上。由此可见,在图像识别过程中,知觉机制必须排除输入的多余信息,抽出关键的信息。同时,在大脑里必定有一个负责整合信息的机制,它能把分阶段获得的信息整理成一个完整的知觉映象。

在人类图像识别系统中,对复杂图像的识别往往要通过不同层次的信息加工才能实现。对于熟悉的图形,由于掌握了它的主要特征,就会把它当作一个单元来识别,而不再注意它的细节了。这种由孤立的单元材料组成的整体单位叫做组块,每一个组块是同时被感知的。在文字材料的识别中,人们不仅可以把一个汉字的笔划或偏旁等单元组成一个组块,而且能把经常在一起出现的字或词组成组块单位来加以识别。

在计算机视觉识别系统中,图像内容通常用图像特征进行描述。事实上,基于计算机视觉的图像检索也可以分为类似文本搜索引擎的三个步骤:提取特征、建索引build以及查询。

相关领域

图像识别是人工智能的一个重要领域。为了编制模拟人类图像识别活动的计算机程序,人们提出了不同的图像识别模型。例如模板匹配模型。这种模型认为,识别某个图像,必须在过去的经验中有这个图像的记忆模式,又叫模板。当前的刺激如果能与大脑中的模板相匹配,这个图像也就被识别了。例如有一个字母A,如果在脑中有个A模板,字母A的大小、方位、形状都与这个A模板完全一致,字母A就被识别了。这个模型简单明了,也容易得到实际应用。但这种模型强调图像必须与脑中的模板完全符合才能加以识别,而事实上人不仅能识别与脑中的模板完全一致的图像,也能识别与模板不完全一致的图像。例如,人们不仅能识别某一个具体的字母A,也能识别印刷体的、手写体的、方向不正、大小不同的各种字母A。同时,人能识别的图像是大量的,如果所识别的每一个图像在脑中都有一个相应的模板,也是不可能的。

为了解决模板匹配模型存在的问题,格式塔心理学家又提出了一个原型匹配模型。这种模型认为,在长时记忆中存储的并不是所要识别的无数个模板,而是图像的某些“相似性”。从图像中抽象出来的“相似性”就可作为原型,拿它来检验所要识别的图像。如果能找到一个相似的原型,这个图像也就被识别了。这种模型从神经上和记忆探寻的过程上来看,都比模板匹配模型更适宜,而且还能说明对一些不规则的,但某些方面与原型相似的图像的识别。但是,这种模型没有说明人是怎样对相似的刺激进行辨别和加工的,它也难以在计算机程序中得到实现。因此又有人提出了一个更复杂的模型,即“泛魔”识别模型。

一般工业使用中,采用工业相机拍摄图片,然后利用软件根据图片灰阶差做处理后识别出有用信息,图像识别软件国外代表的有康耐视等,国内代表的有图智能等。

在人工智能中图像识别技术具有智能化、便捷化以及实用性的优势,为人们的生活与工作带来极大的便利。

语音识别是一门交叉学科。近二十年来,语音识别技术取得显著进步,开始从实验室走向市场。人们预计,未来10年内,语音识别技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。 语音识别听写机在一些领域的应用被美国新闻界评为1997年计算机发展十件大事之一。很多专家都认为语音识别技术是2000年至2010年间信息技术领域十大重要的科技发展技术之一。 语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。

简介

与机器进行语音交流,让机器明白你说什么,这是人们长期以来梦寐以求的事情。中国物联网校企联盟形象得把语音识别比做为“机器的听觉系统”。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。 语音识别技术主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。语音识别技术车联网也得到了充分的应用,例如在翼卡车联网中,只需按一键通客服人员口述即可设置目的地直接导航,安全、便捷。

发展史

1952年贝尔研究所Davis等人研究成功了世界上第一个能识别10个英文数字发音的实验系统。

1960年英国的Denes等人研究成功了第一个计算机语音识别系统。

大规模的语音识别 [1]研究是在进入了70年代以后,在小词汇量、孤立词的识别方面取得了实质性的进展。

进入80年代以后,研究的重点逐渐转向大词汇量、非特定人连续语音识别。在研究思路上也发生了重大变化,即由传统的基于标准模板匹配的技术思路开始转向基于统计模型 (HMM)的技术思路。此外,再次提出了将神经网络技术引入语音识别问题的技术思路。

进入90年代以后,在语音识别的系统框架方面并没有什么重大突破。但是,在语音识别技术的应用及产品化方面出现了很大的进展。

DARPA(Defense Advanced Research Projects Agency)是在70年代由美国国防部远景研究计划局资助的一项10年计划,其旨在支持语言理解系统的研究开发工作。

到了80年代,美国国防部远景研究计划局又资助了一项为期10年的DARPA战略计划,其中包括噪声下的语音识别和会话(口语)识别系统,识别任务设定为“(1000单词)连续语音数据库管理”。

到了90年代,这一DARPA计划仍在持续进行中。其研究重点已转向识别装置中的自然语言处理部分,识别任务设定为“航空旅行信息检索”。

日本也在1981年的第五代计算机计划中提出了有关语音识别输入-输出自然语言的宏伟目标,虽然没能实现预期目标,但是有关语音识别技术的研究有了大幅度的加强和进展。

1987年起,日本又拟出新的国家项目---高级人机口语接口和自动电话翻译系统。

数据库

在语音识别的研究发展过程中,相关研究人员根据不同语言的发音特点,设计和制作了以汉语(包括不同方言)、英语等各类语言的语音数据库,这些语音数据库可以为国内外有关的科研单位和大学进行汉语连续语音识别算法研究、系统设计、及产业化工作提供充分、科学的训练语音样本。例如:MIT Media lab Speech Dataset(麻省理工学院媒体实验室语音数据集)、Pitch and Voicing Estimates for Aurora 2(Aurora2语音库的基因周期和声调估计)、Congressional speech data(国会语音数据)、Mandarin Speech Frame Data(普通话语音帧数据)、用于测试盲源分离算法的语音数据等。

技术发展

目前在大词汇语音识别方面处于领先地位的IBM语音研究小组,就是在70年代开始了它的大词汇语音识别研究工作的。AT&T的贝尔研究所也开始了一系列有关非特定人语音识别的实验。这一研究历经10年,其成果是确立了如何制作用于非特定人语音识别的标准模板的方法。